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We investigate numerically the transition from laminar to chaotic flow of a 
Boussinesq fluid with Pr = 0.71 in two-dimensional closed, differentially heated, 
vertical cavities having aspect ratios near unity. The cavities have rigid conducting 
sidewalls, and rigid insulating top and bottom walls. The physical nature of the 
resulting flow is a function of the aspect ratio and Rayleigh number. 

It is shown that an oscillatory approach to steady-state, oscillatory instabilities, 
quasi-periodic flow, and chaotic flow exist for the flow regimes investigated. We find 
tha t  for aspect ratios of approximately three or larger the the first transition from 
steady-state is due to instability of the sidewall boundary layers, while for smaller 
aspect ratios, but larger than i, it is due to internal waves near the departing corners. 
For both instabilities we obtain the critical Rayleigh number as a function of aspect 
ratio and write expressions relating the fundamental frequencies of the oscillatory 
flow to the Rayleigh number and aspect ratio. When Ra is increased significantly 
above the first critical value, the flow becomes complex since both types of 
instabilities can be present. With a further increase in Rayleigh number the flow 
becomes chaotic and eventually turbulent. The above results are illustrated for 
different Rayleigh numbers and aspect ratios using time histories, spectral analysis, 
and streamlines at  different values of time. 

1. Introduction 
Thermal convection in differentially heated cavities has been studied extensively 

because of its relevance in a number of diverse fields. The majority of prior work in 
this area has been concerned with steady-state laminar flow. Yet in many of the fields 
of application, the flow is unsteady and possibly turbulent. Since many variables of 
engineering interest depend strongly on the flow regime, it is essential to understand 
the different physical processes responsible for the conversion of an initially laminar 
flow to a turbulent one. The present study addresses the oscillatory approach to 
steady-state and the transition from steady-state to turbulence via two-dimensional 
direct numerical simulations. The problem becomes stiff owing to a decrease in 
boundary-layer thickness with increasing Rayleigh number Ra. As a result, there has 
been very little numerical work performed in this area. 

Gill & Davey (1969) and Bergholtz (1978) performed two-dimensional linear 
stability analyses of the buoyancy layers that form on the vertical walls. They 
showed that at a certain Rayleigh number the boundary layers become oscillatory. 
The stability of our problem is very closely related to that of the buoyancy layer 
since for large Ra the stratification in the cavity is approximately constant in the 
horizontal direction and linear in the vertical direction, except near the walls. 
However, we show (see 53.1.2) that their results applied to finite cavities (using a 
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thermal stratification parameter near unity) yield a critical wavelength of the 
vertical wall boundary layer A, - A/Prn,  where A is the aspect ratio, and n < 4; thus 
the applicability of their results to finite cavities is questionable for small Prandtl 
numbers since we find A, z 0.3A for PT = 0.71, where n z 0. Iyer (1973) showed that 
two-dimensional transverse waves are the most unstable in the buoyancy layer, thus 
indicating that our two-dimensional assumption is not unreasonable. However, it  
is not clear that this assumption will remain valid in the nonlinear regime. 
Furthermore, we note that their analyses cannot yield any possible instabilities due 
to the presence of the horizontal walls. 

By including endwall effects, Patterson & Imberger (1980) suggested a relatively 
simple criterion for the presence of internal wave oscillations when Pr 2 1 and 
A d 1. Furthermore, they concluded that cavity-scale internal wave activity is due 
to a ‘pile up’ of the horizontal intrusions at the far ends. Ivey (1984) performed 
experiments in a square cavity at Rayleigh numbers of the order of log using water 
as the working fluid. He emphasized the importance of the inertia effect of the flow 
and his results show that damped oscillations arise from internal hydraulic jumps 
caused by the turning of the vertical boundary layers. Since the source is localized, 
he further concludes that due to rapid attenuation, their presence could not be felt 
throughout the cavity as Patterson & Imberger suggest. The numerical results of 
Chenoweth & Paolucci (1986) seem to be in agreement with Ivey’s conclusions; 
furthermore, they also suggest that for low aspect ratios the ‘hydraulic’ jumps are 
responsible for the first transition to time-dependent flow. 

Le Quere & Alziary de Roquefort (1985~)  used a semi-implicit Chebyshev spectral. 
method to examine the oscillatory approach to steady state of the average Nusselt 
number for A = 1,  Pr = 0.71, and Ra = lo7 and 4 x lo’. For Ra = 4 x lo7 they note 
the presence of detached regions near the departing corners at steady state. These 
regions were also present a t  Ra = lo7, but in this case they did not persist to  steady 
state. Subsequently, Le Quere & Alziary de Roquefort (1986) computed the first 
transition to periodic flow for A as low as 2 and concluded that in all cases the time- 
dependent periodic motion is a result of wall-boundary-layer instability. However, 
for A < 3 they did note the presence of separated flow regions along the horizontal 
walls which remained when the flow was observed to be statistically stationary. 
Haldenwang ( 1986), also using a semi-implicit Chebyshev spectral method, computed 
the solution for A = 1, Pr = 0.71, and Ra = lo6, 106.5, lo’, lo8, and 108.5. He 
concluded that:  regions of reverse flow on the horizontal walls are present for 
Ra 2 107.5; the flow becomes oscillatory for Ra between lo8, and 108.5 where two 
fundamental frequencies were observed ; and that these two frequencies, neither of 
which is in continuity with the one observed at smaller Rayleigh numbers, are first 
observed in the stable solution at Ra = lo8. 

In  this paper we clarify the basic mechanism of steady and unsteady oscillatory 
motion in a rectangular cavity with one heated and one cooled vertical wall and two 
adiabatic horizontal ends. Simulations are performed for a Boussinesq fluid with 
Pr = 0.7 1 ,  t < A d 3, and a wide range of Rayleigh numbers. Our restriction to two 
spatial dimensions precludes possibly important three-dimensional nonlinear effects 
due to vortex stretching. But even within our limitations, imposed by present day 
computers, the simpler model is of interest in providing insight into the physical 
mechanisms which drive the convective dynamics from laminar to turbulent flows. 
Furthermore, while it is an accepted fact that the laminar flow is inherently two- 
dimensional (see Eckert & Carlson 1961), some experiments indicate that even the 
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resulting turbulent flow is dominated by two-dimensional structures (e.g. Elder 
1965). The goal behind the numerical experiments is to study the transitions to 
various time-dependent flows. With increasing Rayleigh number the onset of 
periodic flow is calculated for various aspect ratios. Power spectra of the temperature 
and the velocity components are examined, and their dependence on the location 
probed is discussed. We are primarily concerned with instabilities that precede 
turbulence rather than strongly turbulent flows, although we also look at the 
oscillatory approach to steady-state for high Rayleigh numbers. Due to a lack of a 
closed form analytical solution, we study the loss of instability to time dependent 
flow by direct numerical simulation. This approach allows us to obtain solutions for 
large supercritical values of the Rayleigh number. All of our simulations satisfy a 
criterion for the presence of internal wave activity similar to that of Patterson & 
Imberger (1980), but for Pr < 1 and arbitrary A .  In agreement with Patterson & 
Imberger we show that within this region of parameter space the flow approaches 
steady-state conditions in an oscillatory fashion, although the source of the 
oscillations is different to that suggested by them. In  agreement with Ivey’s (1984) 
experimental results we find that the oscillatory behaviour is due to  the inertia of the 
flow entering the interior of the cavity from the sidewall boundary layers (departing 
corners), which leads to a form of internal ‘hydraulic’ jump when the Rayleigh 
number is sufficiently large. The onset and frequencies of the oscillatory instabilities 
are calculated and compared with available data. We present numerical experiments 
which exhibit repeated supercritical branching leading to chaotic flow after a finite 
number of bifurcations. A sequence of instabilities quite similar to that described 
in this paper has been observed by Gollub & Benson (1980) in a laser-Doppler 
velocimetry study of Rayleigh-BBnard convection and also by Fenstermacher, 
Swinney & Gollub (1979) and Gorman & Swinney (1982) in the Couette-Taylor 
system. In  particular, the velocity spectra show a periodic regime with a single 
fundamental frequency followed by a quasi-periodic regime with two fundamental 
frequencies, and then broadband noise components appear in the spectra. Finally, 
the amplitude of the sharp frequency components decrease with increasing Rayleigh 
number. 

2. Analysis 
2.1. Problem description 

Consider a two-dimensional rectangular enclosure of width L and height H filled 
with a gas. The left and right walls of the cavity are maintained a t  temperatures of 
Th and T,, respectively, where Th > T,. The top and bottom walls are insulated. We 
non-dimensionalize the problem by reference quantities for length, velocity and 
temperature using the cavity width L,  the thermal diffusion speed a/L, and the mean 
of the wall temperatures T, = +(5’L+T,), respectively. 

The problem evolves in time t and can be described in terms of the velocity 
components wi = (u, v) in the xi = (x, y)-directions, temperature T, and pressure p. 
The governing equations are statements of conservation of mass, momentum, and 
energy. The equations, valid under a small Mach number approximation, have been 
previously used by Chenoweth & Paolucci (1986) and are given as follows : 
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a an RaPr a 
at axj axi 2& ax$ 
* + - (pvj vi) = - - + -pni + ~r - T i i ,  

P = P(P, TL (2.4) 

where ll = p( l ) / ( yMa2)  is a reduced pressure which accounts for the hydrostatic and 
dynamic effects, p(’) is the second term in the Mach number expansion of p and is 
O(Ma2), y is the ratio of specific heats, ni is the unit vector in the direction of gravity, 
rij is the viscous stress tensor given by 

Sij is the Kronecker delta function, and r = (y-  l ) / y  is a measure of the resilience of 
the fluid. The thermal conductivity, viscosity, and specific heat a t  constant pressure 
are functions of the thermodynamic variables. Note that the Mach number only 
serves as a scaling for the dynamic and hydrostatic components of pressure. 

The spatially uniform pressure p = p(”(t) appearing in the energy equation and the 
equation of state, which represents the first term in the expansion ofp ,  accounts for 
the change of the static pressure with time. The separation of the pressure 
components, holding under the small Mach number approximation, is the essence of 
the acoustic wavc ‘filtering’; however this splitting introduces p as an cxtra 
unknown. It can be shown that the equation for p, is obtained by a global mass 
conservation statement and the use of boundary conditions. 

The dimensionless boundary conditions are : 

W i ( 0 ,  y, t )  = ?J$(l, y, t) = VJX, 0, t) = V i ( X , A ,  t )  = 0, 

In  the Boussinesq limit e + 0 the relevant independent dimensionless parameters 
are 

(2.6) 

where /3 is the coefficient of volume expansion and AT = Th - T,. The parameters in 
(2.6) represent the aspect ratio, the Prandtl number, and the Rayleigh number, 
respectively. In  this paper we treat only the case Pr = 0.71. Since (2.1)-(2.4) include 
non-Boussincsq effects, in all cases we use ATIT, = 2e = 0.01 to  obtain results near 
the Boussinesq limit. We note that in this limit i7-t 1. 

For each aspect ratio, steady-state solutions for the largest Rayleigh numbers in 
Chenoweth & Paolucci (1986) were used for initial conditions. Thereafter, with the 
exceptions noted, each computation for larger values of Ra was started from the 
stationary flow of the closest lower Rayleigh number. A flow whose statistical 
properties do not vary with time is said to be stationary. A weakly stationary flow 
of second order is one which has a constant mean and variance at  any arbitrary 
location in the flow. Our solutions are weakly stationary to second order only within 
a certain accuracy (see $2.3) since the first two moments are only approximately 
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independent of time. We note that had the Boussinesq equations been used, because 
of the symmetric properties of the problem, the resulting laminar flows would have 
been exactly centro-symmetric even at  the large Rayleigh numbers treated in the 
present paper. To move the solution from mathematically unstable branches an 
arbitrary artificial perturbation would have been required. In contrast the above 
anelastic equations, which treat property variations consistently, do not possess the 
symmetric properties for any finite value of 6 ,  and hence physically unrealizable 
unstable solution branches cannot be obtained. Furthermore, we believe that the 
path through transition is more representative of the real physical problem since the 
properties of the gas properly specify the degree of asymmetry and the amplitude of 
the ‘perturbation’. With this understanding, we caution the reader that when we say 
that a flow is ‘symmetric’, we actually mean that it is symmetric to within O ( E ) .  

2.2. Numerical procedure 
We solved the governing equations (2.1)-(2.4) using primitive variables on a 
staggered mesh with an explicit predictor-corrector finite-difference method using 
forward differences for time derivatives and central differences for spatial derivatives, 
with a truncation error O(At, Ax2). 

There are several ways to formally deduce a finite difference scheme from the basic 
equations. To derive the finite difference equations we discretized the physical 
domain in the (x, y)-plane with three interlacing staggered meshes. One for the 
horizontal velocity component, one for the vertical velocity component, and one for 
all scalar variables. The position of the grid points and their spacings are chosen such 
that the fluid boundaries lie between scalar points. Thus, the top and bottom 
boundaries go through v points, and the vertical boundaries go through u points. One 
layer of grid points outside the region of interest is included to facilitate the 
application of boundary conditions. The governing equations are averaged on a local 
two-dimensional grid volume defined by A&,j  = Axi Ayj to obtain their finite 
difference form. This procedure is described by Grotzbach (1982), where the reader 
is referred for more details. 

The fluid velocity is prescribed on the boundaries of the cavity. This is done in two 
different ways : at those points lying on a boundary we fix the corresponding velocity 
component to the desired value ; for those components for which the computational 
points do not fall on a boundary, we force two interior points and the point exterior 
to the boundary to have the desired values by adjusting the velocity at the outside 
points by quadratic extrapolation. Temperature points do not lie on any boundary. 
Hence, we force two interior points and the point exterior to the boundary to yield 
the specified constant temperature on the vertical walls and a zero flux on the 
horizontal walls by quadratic extrapolations. The boundary conditions for the 
pressure are obtained by evaluating the momentum equations at  the walls. Even 
though the computations are done using primitive variables, all velocity field results 
are presented in terms of the stream function (valid in the Boussinesq limit) 

to facilitate the display of the flow field. 
In order to accurately describe gradients in the wall boundary layers at  large 

Rayleigh numbers, it is necessary to use a non-uniform coordinate mesh. The need 
for non-uniform grids arises since in some cases the smallest grids necessary near the 
boundaries are much smaller than those needed well outside the boundary layers. 
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The approach used is a simple one. The grids are spaced non-uniformly in a manner 
to be described shortly. We transform the non-uniform Axi and Ayj in the finite 
difference equations to a uniform grid using the orthogonal transformation tk = 

tt(xt) which also maps the problem to the computational domain - 1 < tk Q 1, 
where xk = (x, y) and Ek = ( 5 , ~ ) .  An accurate transformed central finite difference 
equation for the first difference operator is given by KBlnay de Rivas (1972) 

where q = ( A Y ) ~  (i33y/i3q3)j/(i3y/i3~)j is important when we have large grid variation. 
The second difference operator is obtained by recursion of (2.8). The above difference 
approximation has a truncation error O(A$) for arbitrary mesh transformation in 
problems of boundary-layer character. 

I n  a study of non-uniform finite difference grids, it  was found by Chenoweth & 
Paolucci (1981) that in order to compute the wall gradients accurately, the Roberts 
( 1  970) transformation 

H ,  = L;l tanh-lL,, 

L, = ( 1  -,!,)B, 

where ij = 2y/A- 1,  gives best results. The values of H ,  and I,, are obtained by 
applying the constraints 7 = 0 and 1 a t  y = $4 and A respectively, along with the 
definition 

4 = ( $ ) J ( $ ) q = o s  (2.10) 

which represents a measure of grid reduction. With this transformation we then have 
that 

(2.11) 

S ,  is a parameter that we choose which approximately represents the ratio between 
the smallest grid located at  the wall to the largest grid located in the centre of the 
cavity. We typically choose values in the range lop2 < 8, < 1,  where the upper bound 
represents a uniform distribution. Respective equations for the x-direction are 
obtained from (2.8)-(2.11) by letting y-tz,  y+(, and A +  1. 

Time advancement may be done either implicitly or explicitly. The first-order 
Euler explicit scheme was chosen since it was easy to implement, has a much lower 
computational cost per timestep, and requires much less computer memory allocation 
than an equivalent implicit implementation. We find that the first-order scheme was 
sufficiently accurate to  resolve the smallest physical timescale. The stability of the 
scheme was found to  be governed by the small grid spacing normal to the walls when 
non-uniform grids were used. This timestep was smaller than that required to resolve 
the largest frequency present in the flow. The finite-difference equations arc solvcd 
using a predictor-corrector scheme (see Chenoweth & Paolucei 1986). 

Finite-difference approximations of the nonlinear terms contain aliasing crrors. 
These errors are usually less severe than corresponding ones obtained using spcctral 
methods due to the damping a t  high wavenumbers of the difference approximation. 
Furthermore, these errors usually increase with the order of accuracy of the 
difference schemes. Lilly (1965) demonstrated that the staggered-mesh difference 
scheme used above preserves invariance properties of the original differential 
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A = $  A = l  

M Ra f, fw M Ra fi fw 

61 x41 104 (7.50) - 61 lo4 (9.346) __ 
61 x41 lo5 (22.25) - 61 lo5 (27.66) - 

81 x61 lo* (74.74) - 81 lo@ (88.56) - 

101 x 61 10' (229.4) - 81 t 10' (273.3) - 

l0lt 1 . 5 ~  log (1545) (26100) 121t 8 x lo7 (747.7) - 

l0lt  1.7 x log (769.2) (28370) 1217 10' (898.2) - 

lor? 1.9 x loo 295.7 30700 l 2 l t  1 . 7 5 ~ 1 0 ~  (1197) (6 120) 
l0lt 2.0 x log 315.6 31910 121t 1 . 9 ~ 1 0 ~  (621.0) (6481) 
l 0 l t  2 . 5 ~  log 2617 37680 l21t 2 x  los 630.3 (6 829) 

1217 3 x los 737.1 8 856 
1217 4 x lo8 850.2 10770 
l 2 l t  log 1215 28 OOO 
121t 10" 11650$ 90 300t 

101 x 6lt  10' (757.6) - l O l t  4~ 107 (508.5) - 

l0lt  1 . 8 ~  log 278.0 29500 1217 1 . 5 ~ 1 0 ~  (1156) (5447) 

A = 2  A = 3  

M Ra fi fw M Ra f, fw 

81 10' (82.19) - 61 105 (22.22) - 

121 2 x lo' (368.6) (1400) 81 10' (69.77) 
121 3 x  lo7 173.2 (1844) 101 5 x lo6 (71.43) (569.9) 
121 4 x  lo7 70.07 2233 101 7 x  lo6 (74.89) 730.8 
121 2 x 10' 407.1 6367 101 lo7 40.32 922.2 

__ 

101 5 x lo7 126.1 2529 
101 2 x  lo8 538.3 61 12 

t To obtain enough resolution we used : A = $ : S, = S, = 0.3 for Ra = los and S, = 0.05, S, = 1 .O 
for Ra = (1.5 x log, 2.5 x lo9); A = 1 : 8, = S, = 0.3 for Ra = (lo', 4 x lo8) and S, = S, = 0.01 for 
Ra = ( lo9, lolo). 

1 We also observed substantial energy at f, = 8000 in the centre of the cavity, and f, = 30420 
in the vertical wall boundary layers. 

TABLE 1. Fundamental frequencies resulting from the given aspect ratio and Rayleigh number 
value. M denotes the number of grids used in the computation; where one value is shown, that 
value is the same in both directions. Except as noted, all computations were performed with a 
uniform grid, i.e. S, = S, = 1.0. fi and fw represent fundamental frequencies of internal and wall 
waves, respectively ; values in parentheses are observed during the transient approach to 
stationary flow, but eventually disappear. 

equations such as conservation of mass, momentum, energy and circulation. Aliasing 
errors can violate these invariance properties and lead to nonlinear numerical 
instabilities. Thus it is felt that  using a staggered mesh with second-order spatial 
accuracy, a first-order explicit time integration, accompanied by grids and timesteps 
small enough to resolve the small spatial and time scales would give us sufficiently 
accurate solutions. 

The computations were performed with a number of grids which varied with aspect 
ratio and Rayleigh number as given in table 1. Note that when a single number is 
given in the table, it implies that the number was the same in both directions, and 
when two numbers are given, the second represents the number of grid points used 
in the vertical direction. Many of the calculations were obtained using different 
spatial resolution (different number of grids or different S, and 8,) without much 
apparent change in the results. 
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For a detailed description of the computational procedure, including validation 
and accuracy of the computer program, the reader is referred to Chenoweth & 
Paolucci (1986). 

Long-time simulations, following the initial transients in the time evolution, serve as 
the basis for statistical analysis. In  all cases the asymptotic time dependent solution 
is obtained by letting the integration time be long enough so that all frequencies 
reported were stationary to within 1 YO. We do note, however, that a t  the same time 
the first and second moments of temperature and velocity a t  the selected locations 
were typically stationary to within 1 % and 5% respectively in regions where the 
highest frequency dominates, and to within 5 O/O and 20 O/O respectively in regions 
where the lowest frequency dominates. Thus the flow is considered to be 
approximately stationary to second order. The largest errors in the statistics resulted 
from simulations which led to a steady-state. I n  those cases the unsteady approach 
was so rapid that only a limited time series was available. 

The critical Rayleigh number for the onset of an oscillatory instability is 
determined indirectly for the different aspect ratios. The time records for the 
temperature and velocity components a t  selected points are obtained for different 
Rayleigh numbers. The initial condition used causes disturbances to be amplified or 
damped depending on the Rayleigh number being above or below the critical value. 
By performing sufficient calculations the critical value can be bounded and 
approximately determined. 

Anumber of experiments (cf. Fenstermacher et al. 1979; Gorman & Swinney 1982; 
Gollub & Benson 1980) have shown that periodic flow is the first step in a sequence 
of instabilities. By increasing the Rayleigh number we examine the additional 
instabilities obtained by the numerical simulation. Different dynamical regimes of 
the flow can be distinguished by examining high-resolution power spectra of the 
fluctuating values of velocity and temperature a t  fixed locations. Transitions that 
are obvious in the power spectra, such as the appearance of a new characteristic 
frequency in the flow, can sometimes go undetected in a direct inspection of the time 
records or flow fields. Furthermore, they may not even appear in the power spectra 
if the probed location is not relatively close to  the source of instability. Thus power 
spectra can be a major tool for the study of the transition from laminar to turbulent 
flow when obtained a t  properly selected locations. Power spectra are computed from 
the squared modulus of the fast Fourier transform of T ,  u and v using standard 
discrete techniques and processed with the Hann window (see Otnes & Enochson 
1978). Spectral estimates are obtained at frequency intervals of l/F = l/NAt up 
to the Nyquist frequency f N  = 1/2At. The resolution of the computed spectra is 
approximately equal to the interval i/F between spectral estimates. Because both 
high resolution and a broad spectral range are needed to distinguish between the 
different dynamical regimes of a flow, data records should contain as many samples 
as possible. Typical records consist of N between 1000 to 10000 sequential samples 
with a frequency resolution Af/fN of the order of 10-3-10-4. Thus changes in thc 
dynamics of the flow can be detected with high sensitivity. We note that in the 
following figures, only a small fraction of the complete records are shown. 

Although not presented here, we note that the behaviour of the local heat transfer 
on the sidewalls mirrors that of the adjacent temperature field. However, even 
though the character of the average heat transfer on the sidewalls is consistent with 
that of the global flow field, one must be careful in interpreting the actual frequencies 
obtained from such data alone. 

2.3. Statisticul analysis 
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3. Results 
It has become a generally accepted fact that  the first transition to turbulence in 

the differentially heated cavity occurs by instability of the boundary layers on the 
vertical walls. This has been shown to be the case in a number of experimental works 
(e.g. Eckert & Carlson 1961 ; Mordchelles-Regnier & Kaplan 1963; Elder 1965) and 
more recently in the numerical works of Le Quere & Alziary de Roquefort (1985a, 
1985b, 1986). The one characteristic that all the above studies have in common is 
that primarily aspect ratios substantially larger than unity were investigated. 
However, experimental observations of the oscillatory approach to steady-state by 
Ivey (1984) for Pr = 7.1 and sufficiently large Ra,  clearly indicated that the 
oscillations for A = 1 are due to wave-breaking arising from internal ‘hydraulic ’ 
jumps near the departing corners. 

It will be shown below that for aspect ratios near unity, as the Rayleigh number 
is increased an oscillatory instability due to internal waves occurs before the wall 
boundary layers become unstable (this was first pointed out by Chenoweth & 
Paolucci 1986). We know of no other result which shows that this first transition to 
time dependent flow is due to  an internal wave instability. This strictly periodic time 
dependence evolves from a steady flow and is recognized by a periodic solution 
showing sharp peaks in the power spectrum and these peaks are harmonics of a single 
fundamental frequency fi. This is followed by a quasi-periodic (or doubly periodic) 
state displaying sharp peaks containing two incommensurate frequencies fi and jw, 
along with linear combinations of these fundamental frequencies. As the Rayleigh 
number is further increased, broadband components appear in the spectra in 
addition to the narrow peaks. This non-periodic flow is regarded as being weakly 
turbulent, since it appears from the flow fields that the flow varies randomly in space 
as well as in time. This flow has properties of both periodic and turbulent flows : the 
narrow peaks indicate that the velocity correlations persist, yet the broad 
components clearly indicate a chaotic element in the flow. 

3.1. Transition to unsteady Pow 
As a result of the numerous computations for various values of A and R a  listed in 
table 1, we obtain the stability map displayed in figure 1. This figure is a more 
detailed and accurate stability map of the lower right corner of figure 3 given in 
Chenoweth & Paolucci (1986). The solid and dashed lines in the figure represent the 
critical Rayleigh numbers Rai for internal waves and Raw for the wall boundary 
layers, respectively. To the left of the curves perturbations are damped while to the 
right they are amplified leading to oscillatory flow. From the figure it is evident that 
for !j < A < 3 the internal waves become unstable before the wall boundary layers. 
It is also evident that the change in slope of the neutral stability curve for the wall 
boundary layers near A = 3 is due to an interaction between the boundary layers and 
internal waves near the departing corners. This point is illustrated in figure 2 where 
the streamlines for R a  = 5 x lo6 and A = 3, and R a  = lo6 and A = 5 are shown. The 
vertical wall boundary layers first become unstable near the end regions and it is 
there that the presence of the stationary internal jumps and their interaction with the 
boundary layers occur. From the steady streamlines in figure 2(a) we see that the 
presence of the opposite walls constains and indeed damps the downwstream 
oscillations of the internal jumps to such an extent that for significantly larger aspect 
ratios, as can be seen in figure 2(b), stationary jumps cannot develop a t  all near 
Raw. We note that in figure 2 (6) the boundary layers are unsteady, but the amplitude 
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FIGURE 1. Critical Rayleigh numbers as functions of aspect ratio: -, Ra,; ----, Raw. 

FIGURE 2. Stream fields: ( a )  A = 3 and Ra = 5 x lo6; ( b )  A = 5 and Ra = lo6. 

of the oscillations are imperceptible in the figure. In the range t < A < 2 the curves 
in figure 1 are described to a good approximation by 

Ra, = 1.93 x lO8AP3.l5, (3.1) 

and Raw = 2.70 x 108A-2.76. (3.2) 

We now show that (3.1) and (3.2) are consistent with estimates obtained by the use 
of simple arguments and previous analyses. 
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3.1.1. Internal wave instability 

Using reasoning similar to Patterson & Imberger (1980) and Ivey (1984) but for a 
fluid with Pr < 1, we consider the corner region where the rising (falling) flow is 
turned due to the presence of the top (bottom) boundary. For values of A, Ra,  and 
Pr in the steady boundary-layer regime, if we compute the average vertical velocity 
B and momentum thickness 6, a t  the midheight of the cavity, we find that u/vM = 
6,/6 = 0.497, where vy is the maximum vertical velocity and 6 is the boundary-layer 
thickness. If we further assume constant pressure in the corner regions, from 
conservation of mass (using results of Chenoweth & Paolucci 1986) we can write 

ii = 0.1298(A PrRa);, (3.3) 

and (3.4) 

where @ is the average horizontal velocity and A is the local momentum thickness of 
the intrusion, or wall jet. Now, following Ivey (1984), a characteristic internal 
Froude number can be defined for this horizontal flow by 

where g’ = LZrRa. Using (3.3) and (3.4), and their equivalent for Pr > 1, in (3.5) we 
obtained the result 

(3.6) 
{ 0.125Ag(PrRa)i if Pr < 1, 

0.125A~Pr-~Ra~ if Pr > 1. 
Fr = 

The flow is critical when Fr = 1 (see Ivey 1984; Turner 1973). If the flow is 
subcritical (Fr < l) ,  it spreads out smoothly over (under) the heavier (lighter) fluid 
as the intrusion approaches the cold (hot) wall. If the flow is supercritical (Fr > 1) the 
flow may undergo an internal ‘hydraulic ’ jump. As pointed out by Ivey (1984), by 
analogy with open-channel flow (Lighthill 1978), the energy loss associated with any 
internal jump is dissipated in a stationary wavetrain downstream of the jump for 
1 < Fr < 1.3, but for higher values of Froude numbers, these waves break, resulting 
in an unsteady wave downstream. Indeed from (3.6), for Pr d 1 we see that steady 
jumps should become apparent at 

A 1 . 6 5 ~  107 
PrA3 ’ 

Ra > Ra, = 

and unsteady (and eventually disordered) for 

A 1 . 3 4 ~  lo* 
PrA3 ’ 

Ra > Rai = 

(3.7) 

The last estimate is in good agreement with the simple numerical correlation (3.1). 
Furthermore, the above scenario is in qualitative agreement with the corner flow 
regions of A = 1 displayed in figure 3 (a-d ) for increasing values of Ra. In  the figures 
all values of the Froude number are supercritical (1.30, 1.31, 1.37 and 1.42 for figures 
3(a-d) respectively), but only the flow field in figure 3(a) is steady. Notice that the 
flows are symmetric in figures 3 (a)  and ( c )  but not in 3 ( b )  and ( d ) .  This anomaly and 
the connection with the frequencies present in the flow arc discussed later. The above 
description is consistent with the limited computational results of Haldenwang 
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FIGURE 3. Stream fields for A = 1 : (a)  Ra = 1.9 x lo8; ( b )  Ra = 2.0 x lo8; (c )  Ra = 3.0 x lo8; 
( d )  Ra = 4.0 x 10’. 

(1986) who shows that for A ~1 the flow becomes unsteady for Ra between lo8 and 
i08.5. In  addition, for A = 1, Ra, is consistent with the numerical results of Le Quere 
& Alziary de Roquefort (1985a), Chenoweth & Paolucci (1986) and Haldenwang 
(1986), who find the appearance of recirculating regions near the departing corners 
a t  Ra within the ranges 10’4  x lo7, 1 0 7 4  x lo7, and 107-107.5, respectively. The 
internal jumps are identified by the steep large-amplitude waves and distinct 
recirculating regions on the horizontal walls. 

The only relevant experimental results are those of Ivey (1984). While the 
structures and associated eddies disappeared in Ivey’s experiment as the flow 
evolved to steady state, in our computations they persist and give rise to the 
oscillatory instability. To clarify that this difference is strictly due to a Prandtl 
number dependence, we performed a simulation starting from quiescent conditions 
for A = 1 with Pr = 7.1 and Ra = 9.2 x lo8, which corresponds to  one of Ivey’s test 
cases. The resulting flow fields are similar to those of Ivey for the time range reported 
by him. Our respective temperature traces a t  the same two probe locations are 
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FIGURE 4. Time histories of T -  1 for A = 1 ,  Pr = 7.1 and Ra = 9.2 x lo8 at locations : (a)  xi = (0.21, 
0.967) ; ( 6 )  x1 = (0.21,0.937). The solid lines are from our simulation, while the dotted ones are from 
Ivey's (1984) experiment. 

t ( x 10-4) 

displayed in figure 4(a,  b).  We observe that the time responses are surprisingly 
similar considering the fact that the probed locations are unfortunately located very 
close to the top boundary where small experimental heat losses greatly affect the 
location of the existing structures relative to those of the probes. We note that while 
it appears that the flow is proceeding to a steady state, in fact we find that the wall 
boundary layers become unsteady and remain oscillatory long after the internal 
waves have decayed. This instability only becomes evident for t > 2 x low3, which 
is substantially later than the lakt ime reported by Ivey. Since in this particular case 
Fr = 0.62 (from 3.6)) and Ra > Raw = 2.2 x 10' (see (3.9)), then the simulation results 
are also consistent with the stability estimates. 

In  figure 5(a-d) we show similar flow fields for A = 2. In  this case from (3.6) we 
have Fr = 0.87 in 5(a) ,  1.27 in 5 ( b ) ,  1.34 in 5(c) ,  and 1.39 in 5 ( d ) .  We note that the 
flows in figures 5(a)  and 5 ( b )  are steady, while figures 5 ( c )  and 5 ( d )  represent 
snapshots of time dependent flows. The presence of a jump is evident in figure 5 ( b )  
while the loss of symmetry is apparent in 5 ( d ) .  The loss of symmetry, as is discussed 
later, appears to be due to the fact that  the flow is quasi-periodic with two 
incommensurate fundamental frequencies present, one due to oscillatory internal 
waves, the other to the unstable wall boundary layers. This behaviour is also 
observed even during the approach to statistical steady state when both frequencies 
are present. However, we do not know any physical reason why this spatial and 
temporal symmetry breaking should occur simultaneously. When only one frequency 
is present, either during the transient or at statistical steady state, the flow retains 
the symmetry imposed by the data. Indeed in figure 5 ( c )  only one fundamental 
frequency due to the instability of internal waves is present as shown in figure 6. 
Figure 6(a)  is a time record of T -  1 obtained a t  xi = (3.554 x 1.645). Figures 
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FIGURE 5 .  Stream fields for A = 2 : (a,) Ra  = 10" ; ( b )  Ra = 2 x 10' ; (c) Ra = 3 x 10' ; 
( d )  Ra = 4 x lo7. 

6 ( b ) - G ( d )  are the responses of T-1, u and a, respectively, shown on expanded 
timescales. Some information about the spatial structure of this oscillatory flow can 
be obtained by looking a t  the flow fields shown in figures 5 ( c )  and 7 which correspond 
to the specific times through the period labelled (i)-(v) in figures 6(b)-6(d) .  As readily 
observable, the flow field in 7 ( d )  is essentially the same as that in 5(c). The primary 
reason for the small differences is that the two times (i) and (v) are not exactly one 
period apart, As seen from the figures, the cycle begins with the large-amplitude 
waves retracted against the vertical walls in figure 5 (c) ; they collapse and a t  the same 
time move away from the walls in figure 7 (a )  ; the separated regions begin to grow 
again as the waves continue to move forward in figure 7 ( b ) ;  they reach their 
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fields are given in figures 5(c), and 7(a)-(d), respectively. 

maximum extent and amplitude in figure 7 (c) ; and finalIy they recoil back against 
the vertical walls in figure 7 ( d )  to complete the cycle. The frequency of this 
oscillation is fi. 

3.1.2. Boundary layer instability 
Using existing linear stability results, we can further obtain an analytical estimate 

of Raw given in figure 1 and approximated by (3.2). The stability of the wall 
boundary layers is very closely related to that of the buoyancy layer studied by Gill 
& Davey (1969) and Bergholtz (1978) since an approximately constant vertical 
density gradient is present in the core of the cavity. It can be shown that the thermal 
stratification parameter (AIAT)  (i3T/i3y),,; is typically close to unity in this region of 
parameter space (see also Chenoweth & Paolucci 1986). Using a value of unity in 
conjunction with the buoyancy-layer stability results, we get that 

A 
Raw = 4 ( R  Pr)4 A-3,  (3.9) 

where R depends on the Prandtl number as shown in table 2 which has been adapted 
from table 1 of Gill & Davey (1969). The aspect ratio dependence of A-3 is in good 
agreement with that given by (3.2). The larger discrepancy between the coefficient 
of 1.13 x lo8 given by (3.9) for Pr = 0.71 and that in (3.2) can be attributed to 
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FIGURE 7. Stream fields for A = 2 and Ra = 3 x LO7 : (a)-(d) correspond to time values (ii)-(v) in 
figure 6. 

interactions with the internal waves. Nevertheless, the dashed curve for A 3 4 in 
figure 1 and (3.9) are in excellent agreement with Elder's (1965) experimental 
estimate using water, and the results reported in table 1 of Le Quere & Alziary de 
Roquefort (1986) for Pr = 0.71. Note that the Prandtl number dependence in (3.9) 
is weak at  Prandtl numbers of order unity, while it approaches the limit of Pr2 as 
Pr+ 00. The good agreement between our results and equation (3.9) is surprising in 
light of the fact that from the stability analyses it can be shown that the critical 
wavelength is given by 

A ="(L); Pr (3.10) 

where Oi is given in table 2. For Pr = 0.71 we obtain A, x 0.3A, which would put into 
question the applicability of the buoyancy-layer results to finite cavities at  low 
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oi 

0.289 
0.278 
0.326 
0.381 
0.436 
0.458 
0.465 
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0.454 
0.445 
0.417 

c^ 

0.281 
0.313 
0.347 
0.375 
0.409 
0.432 
0.456 
0.471 
0.482 
0.491 
0.512 

TABLE 2. Critical values of R, &, and 6 ,  as functions of Prandtl number Pr 

Prandtl numbers. We note that (3.10) is only valid when A < R Pr/ 10, since it is only 
then that the boundary layers in the cavity become thin enough to  make any 
comparison to the buoyancy-layer limit relevant. 

3.2. Time series and frequency spectra 

A comparison of different power spectra shows that a frequency observed at an 
arbitrary point can be detected in the spectra of all variables in the flow field, 
provided that the Rayleigh number is well above the critical value and that the 
resolution of the spectral analysis sufficient. However, the amplitude of a certain 
frequency depends strongly on the variable considered and on the location of the 
measurement. 

This is illustrated for A = 2 and R a  = 3 x 10' in figure 8, where power spectra for 
T -  1, u and v are displayed. The spectra are based on the same time interval, a small 
part of which is shown in figure 6 ( a ) ,  a t  a location near the internal jump. As evident 
from figure 8 (and table I) ,  the spectra all show the same fundamental frequency of 
173.2 and several higher harmonics that are integral multiples of the fundamental. 
Similarly, time samples and spectra for T -  1 a t  two boundary-layer locations and in 
the centre of the cavity are shown in figure Q(a-c) using the same coordinate scales 
as in figures 6 ( a )  and 8(a) .  I n  the figures we also display enlargements of the time 
samples showing the detailed structure of the oscillations. The figures show the 
striking attenuation of the temperature oscillations with increasing distance from the 
departing corner. We note that even though the fundamental frequency can be 
detected by looking at  the time records, in some of the cases its power content is 
too small to appear within the five orders of magnitude shown. This example 
demonstrates that unless one can isolate the source of the instability, it is difficult to 
characterize the flow field by one single power spectrum recorded at one fixed point. 
The amplitudes of the different peaks in a power spectrum are not representative for 
the global flow field but depend on the spatial location. The figures do show that the 
amplitudes are largest in the corner region and decrease as we approach the centre 
of the cavity as well as the vertical walls, thus clearly indicating that the source of 
instability is the internal jump. The wall boundary layers were also observed to be 
unstable during the transient but their oscillations damped as the flow became 
stationary. In  table 1 we report the observed fundamental frequencies for damped (in 
parentheses) and undamped oscillations for both internal wave and wall boundary- 
layer oscillations, fi and f, respectively, as the flow approached stationarity. 
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FIGURE 8. Power spectra for A = 2 and Ra = 3 x lo' at xi = (3.554 x lo-', 1.645): (a )  ET 

For A < and A >, 3 the first instability is due to  the wall boundary layers as Ra 
increases. Figure 10 shows typical time samples and spectra of T -  1 for A = 3 and 
Ra = 7 x lo6. The steady flow for Ra = 5 x lo6 shown in figure 2 (a )  was used for 
initial conditions. By inspecting the amplitudes of the samples and spectra at the 
given locations it is clear that  only one fundamental frequency exists and is 
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associated with the instability of the wall boundary layers. Note that remnants of the 
damping internal waves, even though having seven orders of magnitude less power, 
can still be seen in figure 10 (d  ) obtained from the centre of the cavity. Furthermore, 
we note that the frequency of oscillations due to the boundary-layer instability is 
approximately one order of magnitude larger than that due to the damping internal 
waves, and as expected the higher frequency attenuates faster than the lower one in 
space as well as in time. 

For aspect ratios & < A < 3 and Rayleigh numbers Ra, < R a  < Raw, and A 6 & or 
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FIGURE 10(a, b ) .  For caption see facing page. 

A 3 3 and Raw < Ra < Rai, the power spectra contained only a single frequency 
component fi or fw,  respectively, and their related harmonics ; hence the flow in those 
regions is strictly periodic. The same frequencies are observed a t  different positions 
in the flow fields, although the amplitudes of the spectral components varied with 
location. The extent of the range of aspect ratios below $ where the wall boundary 
layers become unstable first is not known a t  this time. For A larger than 3, Le Quere 
& Alziary de Roquefort (1986) have shown that this instability occurs for aspect 
ratios a t  least as large as 10. 

In order to obtain more detailed information about the bifurcations, a number of 
calculations were made with A = 1 by varying the Rayleigh number in the vicinity of 
the bifurcation points. These calculations are not listed in table 1 since they were not 
carried through a long enough period of time past stationarity to obtain statistics 
from them. Since we compute the solutions from initial conditions and wait until the 
flow eventually equilibrates to its stable state, we necessarily compute only the 
physically stable branches of the bifurcation diagram. It is therefore difficult in 
general to identify the fact that a bifurcation has occurred. Our reasons for claiming 
that a bifurcation has occurred are that the equilibration times become much longer 
as we approach thispoint, the character of the solution changes dramatically a t  the 
point as evidenced by the power spectra, and the amplitudes of the spikes in the 
power spectra decrease to zero as the point is approached from above. 

8.036 x 10-l) for various Rayleigh numbers near the first critical point. From the 
I n  figure 11 we show the amplitudes of T- 1 ,  u and v a t  xi = (1.032 x 
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FIGURE 1 1 .  Bifurcation diagram of the first instability for A = 1 showing the maximum 
amplitudes of T- 1 ,  u and v. 
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results it appears that it is a classical Hopf bifurcation located near Ra = 1.93 x lo8. 
The non-existence of a hysteresis was verified by approaching the critical point 
from above and below. Similarly, Le Quere & Alziary de Roquefort (1986) have 
shown than when the wall boundary layers become unstable first, the critical point 
is also a Hopf bifurcation. 

As the Rayleigh number is increased further we observe a second bifurcation to a 
quasi-periodic regime. We do know that this instability is due to the wall boundary 
layers. Furthermore, we have sufficient evidence indicating the presence of hysteresis 
near this critical point - the transition occurred at 2.7 x lo8 with increasing and 
2.55 x lo8 with decreasing Rayleigh number. At aspect ratios larger than 3, Le 
Quere &, Alziary de Roquefort (1986) have shown that instability of the wall 
boundary layers lead to a supercritical Hopf bifurcation. Our results would then 
indicate that for A < 3 the hysteresis is possibly due to the physical interaction of the 
two unstable mechanisms. 

Somewhere within the Rayleigh number range of 3 x lo8 to 4 x lo8, as will be 
evident from results given below, the flow undergoes a further bifurcation to  a 
chaotic flow. 

Additional information regarding the instabilities is obtained by observing the 
variation of power spectra a t  the different Rayleigh numbers. In  figure 12(a-e) we 
show the frequency spectra and portions of the corresponding time records of T- 1 
obtained a t  the same location as the above bifurcation diagram. We note that in all 
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cases, except in figure 12(e) ,  the time samples and frequency spectra are plotted on 
the same scales to make comparisons easier. To show the resolution of the time 
samples, details are also shown as insets. We further note that figures 3(a) -3(d)  are 
snapshots of streamlines obtained within the sampled range used to obtain the 
spectra in figures 12 (a)-12 ( d ) ,  respectively. 
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In figure 12 (a )  we easily see that the flow a t  Ra = 1.9 x 10' is stable. Furthermore, 
even though the statistics in this case are not stationary, from the blowup of the time 
sample and the frequency spectrum we see that two fundamental frequencies are 
present. These frequencies correspond to transient instabilities of the internal waves 
near the departing corners and the vertical wall boundary layers. Again, we note the 
faster attenuation rate of the higher frequency. 

A time sample and power spectrum for Ra = 2 x 10' are shown in figure 12 (b ) .  
From the figures we see that the flow is strictly periodic with a fundamental 
frequency fi = 630.3 originating from unstable internal waves. Additionally we 
observe three higher harmonics within the five orders of magnitude shown. 

At Ra = 3 x 10' we see from figure 12 ( c )  that the flow is quasi-periodic with the two 
fundamental frequencies fi = 737.7 and fw = 8856, plus harmonics obtained from 
their linear combinations. The many linear combinations of the fundamental 
frequencies indicate the strongly nonlinear character of the process. The fundamental 
frequencies arise from instabilities of the internal waves and the wall boundary 
layers, respectively. Note that, as mentioned previously, we could not determine 
unambiguously the value of the larger fundamental frequency by looking a t  this 
figure alone. Since the source of these oscillations is located in the vertical wall 
boundary layers, we examined the spectrum in that region of the flow to determine 
its value. 

As the Rayleigh number is increased to  Ra = 4 x lo', the flow becomes non- 
periodic and the spectrum is marked by broadband components, particularly at the 
lower frequencies. The flow can no longer be described by a small number of well- 
defined characteristic frequencies ; the flow is described as chaotic or weakly 
turbulent. However, it should be noted that most of the spectral energy still resides 
in the sharp peaks representing the fundamental frequencies fi = 850.2 and f, = 
10770 and their linear combinations, and the flow is still highly ordered, as can be 
seen in figures 12 ( d )  and 3 ( d ) .  Nevertheless, it is important to  emphasize the essential 
qualitative change in the behaviour of the system when the broad components 
appear in the spectrum. When only discrete frequencies are present, the behaviour 
of the system is in principle known for all times, but when even a small amount of 
randomness appears, as evidenced by the broad spectral components, we can no 
longer hope to make accurate predictions of future values of dependent variables 
based on the solution at earlier times. 

As the Raylcigh number is increased further, the amplitudes of fi and f ,  decrease 
while the background spectral continuum increases. This can be seen from the power 
spectrum for Ra = 1O1O shown in figure 12(e). Since the spectrum is continuous it 
appears that the flow is fully turbulent a t  this Rayleigh number with most of the 
energy residing a t  the lower frequencies. We note that no single frequency stands 
out. However, the frequencies related to fi and f ,  are still visible a t  some locations 
within the cavity. We further note that even though the flow appears to be fully 
turbulent, the mean flow is symmetric and well behaved. More extensive results in 
this fully turbulent case will be reported by Paolucci (1989). 

The transition from periodic to chaotic flow can be clearly visualized in figure 13, 
where T- 1, at the same location as the spectra shown in figure 12, is plotted versus 
the velocity component u for Ra = 2 x lo', 3 x lo*, 4 x lo', and 1O1O. 

As can be seen from figures 3(d) and 12(d) ,  the flow is highly asymmetric as 
expected when the flow is chaotic. However, similar to figure 5 (d ), we expected that 
the flow field in figure 3(c) would also be asymmetric due to  the presence of two 
fundamental frequencies as shown in figure 12 (c), and consistent with the results a t  
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other aspect ratios. However, at this Rayleigh number fw/fi = 12.005 and 
additionally fw/nfi is an integer for n < 4 indicating that the dominant frequencies 
are locked, providing a possible explanation for the symmetry in the flow field. The 
explanation for the slight asymmetry in figure 3 ( b )  is not as clear since the spectrum 
in figure 12(b )  indicates that only one frequency is present in the flow field at the 
probed location. However, as noted in table 1,  the wall boundary layers were 
unstable during the transition approaching stationarity, and the presence of this 
instability is possibly still influencing the slowly changing flow field. 

The frequency ratio fw/ fi varies with increasing Rayleigh number for all computed 
aspect ratios. Therefore fw/fi is in general irrational and the regime with the two 
modes f, and f, is quasi-periodic. As indicated by figure 1 4 ( a - d ) ,  in general the ratios 
increase sharply near Ra, and then vary more gradually with Ra. We remark that 
because of the lack of resolution with Ra, it is not possible to  investigate the extent, 
if any, of frequency locking. The jump in frequency ratios occurring just below the 
critical Rayleigh numbers is due to a frequency drop in fi as can be seen in figure 
1 5 ( a d ) .  In figure 15(b) we also include data from Haldenwang (1986). As can be 
seen, except for the drop in frequency, our results are in excellent agreement with his. 
At Ra = lo8, our respective flows approach the same steady state with differing 
fundamental frequencies which depend on the amplitude of the initial perturbation. 
The discrepancy in frequency can be explained by the fact that the initial condition 
he used for his calculation was obtained from a much lower Rayleigh number than 
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FIGURE 14. Frequency ratio versus Rayleigh number: (a )  A = 3 ;  ( b )  A = 1 ; (c) A = 2 ;  
( d )  A = 3. 

ours. We verified this sensitivity to initial conditions in the vicinity of the critical 
point by using a lower Rayleigh number result for our initial condition. Note that 
even though similar qualitative behaviour is exhibited a t  the different aspect ratios, 
the amount of frequency drop and the rate of recovery with Rayleigh number does 
depend on A .  

As pointed out previously, the fundamental frequency fi is due to periodic 
oscillations of the internal jump. By looking at the time evolution of the flow fields, 
it appears that the initial drop in fi near Rai occurs when this amplitude becomes 
large. Large initial perturbations can cause this extreme motion to occur during the 
transient even for Ra < Rai, and once the frequency is reduced, i t  remains locked 
at the reduced frequency if Ra is sufficiently close to Ra,. This motion eventually 
becomes so severe with increasing Ra that due to strong interactions of the jump with 
the vertical walls the recirculating regions grow and collapse while shedding mass 
and vorticity. It is the time necessary to rebuild the recirculating regions that is 
responsible for the frequency drop. The magnitude of the recirculating region before 
collapse is largest when fi reaches the lowest values near Ra,. As Ra is increased 
further, the shedding of mass occurs more often causing the size of the regions to 
become smaller, thus fi increases again with Ra. Finally, when the flow becomes fully 
chaotic, there are no coherent wave structures remaining in the departing corners 
and it becomes difficult to identify a frequency with the motion there. The above 
qualitative physical description of the internal jump near the transition region is 
similar for the different aspect ratios. 

Thorpe (1968) and Keunecke (1970) using linear analyses, examined two- 
dimensional internal waves in a rectangular container. For a linear density 
stratification they obtained to  first order an expression for the frequency which 



Transition to chaos in a differentially heated vertical cavity 405 

depends on the controlling parameters. This expression recast in our nomenclature 
is given by 

(3.11) 

where C,Z is directly proportional to the stratification gradient, and p and n are 
wavenumbers in the horizontal and vertical directions, respectively. Using purely 
physical arguments, Fischer et al. (1979) obtained the identical expression. (Note 
that Patterson & Imberger (1980), also using physical arguments, obtained (3.11) 
without the n l p  dependence, i.e. n l p  = 1 ; furthermore, the A-2 dependence in the 
denominator appears as A2 in their equation possibly due to a typographic error.) In 
general, q and n / p  depend on Pr, Ra, and A .  

Additionally, Thorpe (1968) and Keunecke (1970) used liquid filled cavities of 
known linear density stratification to  verify (3.1 1) experimentally. By varying the 
frequency of plungers located on the two opposite vertical walls, Thorpe was able to  
excite waves of small amplitude having different modes. Using the observed values 
of n and p in (3.11), he found the predicted frequency to be in good agreement with 
that of the plungers. Furthermore, he studied the nonlinear effects of instability and 
resulting mixing on the natural frequency of the internal waves. He found that 
through the different stages of transition the natural frequency of the wave motion 
was reduced by a non-negligible amount as their amplitudes were increased. He 
attributed this anomaly to  wave-breaking and subsequent mixing. This result is 
consistent with a decrease in frequency indicated by a third-order correction to  (3.1 1) 
which he derived. Keunecke, using a more accurate experimental procedure also 
verified the validity of (3.11). 

I n  our problem, even though the large wave structures in the departing corners are 
analogous to Thorpe’s pistons, we have no direct control of the wave mechanism. 
Furthermore, because our problem is much more complicated, we are not able to 
directly observe the different modes that are excited. However, for A = O(1) and 
Ra < Rai the characteristic horizontal and vertical lengthscales of the flow are such 
that n l p  = 1 ,  so that by using the measured frequencies we obtain the approximate 
result that Cf = 0.91, consistent with the observed stratifications. For Pr = 0.71 we 
find that q is approximately constant and slightly smaller than unity in all cases 
considered in this paper. Figure 15 shows that (3.11) is in excellent agreement with 
the data where n l p  = 1 is expected. In  the vicinity of Rai, the drop in frequency is 
evident as the flow approaches steady state, since i t  becomes unstable during the 
transient owing to finite initial perturbations. Our results indicate that as Rai is 
approached from below with infinitesimal perturbations, the drop in frequency 
should occur a t  Ra,. The initial decrease in frequency appears to coincide with vortex 
shedding occurring in the departing corners, consistent with Thorpe’s observations. 

If we assume that (3.11) remains valid in the transition region with C: = 0.91, then 
the equation cann be used to estimate n l p  provided values of fi from table 1 are 
substituted for fi. The resulting estimates are shown in figure 16(a-dj for the 
different aspect ratios. We note that in all cases we have a sharp increase in nlp near 
the transition followed by a drop after a maximum is achieved. As can be seen from 
figures 15 and 16, the sharp increase in n l p  corresponds directly to a drop in 
frequency, while the following decrease in n l p  indicates a recovery from the initial 
frequency drop. The behaviour of n l p  may be altered since (3.11) does not contain 
higher-order effects which may be important during the transition region where 
wave-breaking and mixing occur. 
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FIGURE 15. Computed internal wave frequencies versus Rayleigh number : (a )  A = 4; (b )  A = 1 : 
( c )  A = 2 ;  ( d )  A = 3. The line is given by (3.11) with n/p = 1 ,  and the diamonds in (b)  are numerical 
resuts of Haldenwang (1986). 

I n  a similar fashion, much can be learned about the behaviour of the wall 
instability by examining its frequency response more closely. Again, looking at the 
related results of Gill & Davey (1969) and Bergholtz (1978) for the buoyancy laycr, 
we arrive at an equation for the critical frequency of the linearly unstable wall 
boundary layers : 

fW = Cw-(&PrRa2)i. (3.12) 

Values of &, 6, and R were given by Gill & Davey and are repeated in table 2 for 
convenience. The constant C, appears to be related to the approximately linear 
stable stratification. It was introduced here to  account for the differences between the 
idealized conditions in the buoyant layer and our problem. A value of C, = 0.91 is 
obtained when (3.12) is fitted to our numerical results. Figure 17 displays a 
comparison of the frequency of wall waves presented in table 1 with those obtained 
from (3.12). The open circles in the figure are from computations that ultimately lead 
to steady state (given in parentheses in table 1 )  while the filled ones result from 
unsteady solutions. Results of Le Quere & Alziary de Roquefort (1986) for A = 2-6 
and Haldenwang (1986) for A = 1 are included in the figure and represented by 
squares and diamonds, respectively. It appears that  the lowest-frequency results of 
Le Quere & Alziary de Roquefort start to  depart from (3.12) since the hot and cold 
wall boundary layers can no longer be considered independent for A 3 6. As evident 
from the figure and from the data in table 1, (3.12) is valid well past the critical point. 
The explanation for this is that as Ra is increased, the transition point on the 
boundary layer moves closer to the entry corner. Thus as long as the flow entering 
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FIGURE 16. Characteristic wavenumber ratio versus Rayleigh number: (a) A = t ;  ( b )  A = 1 ; 
( c )  A = 2 ;  ( d )  A = 3. 
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FIGURE 17. Computed wall frequencies 218. (3.12): 0, damped when flow became stationary; 0,  
did not damp when flow became stationary; 83, Le Quere & Alziary de Roquefort (1986) ; +, 
Haldenwang ( 1  986). 

the vertical wall is 'well behaved ', a developing laminar boundary-layer region exists 
and becomes unstable as the local Rayleigh number increases. Therefore, it appears 
that as long as the transition region is far enough away from the entry and exit 
corners, this region determines the fundamental frequency of the oscillations. For a 
fixed aspect ratio, this condition exists for a wide range of Ra > Raw. Ultimately, as 
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Ra is increased further, the critical point moves close enough to the entry corner to 
be affected by it. For A = 1 this occurs a t  Ra near lo9, since we observe from figure 
17 that its computed frequency is significantly above the line given by (3.12). 

4. Conclusions 
I n  summary, we have demonstrated by numerical simulation that a variety of 

dynamic behaviours can occur in two-dimensional convection. With increasing 
Rayleigh number, the steady convection flow becomes unstable with respect to time- 
dependent disturbances. I n  general, for A < $ and A > 3 the first time-dependent 
instability is due to the boundary layers along the vertical walls. However, for < 
A < 3 we first find periodic motion due to internal waves near the departing corners, 
then quasi-periodic motion (arising from wall boundary layers), aperiodic motion 
with complex regularity, and finally turbulent motion. The physical mechanisms 
responsible for the dynamic behaviours are reasonably well understood. We believe 
that the exposition of the complex dynamic behaviour presented here is possibly 
important in understanding other flows in natural convection. 

One principal finding of this work is that periodic flow is followed by only one 
additional distinct dynamical regime (quasi-periodic flow with two incommensurate 
frequencies) prior to the appearance of a chaotic regime. This result is consistent with 
the predictions of Newhouse, Ruelle & Takens (1978). I n  addition, even though we 
restricted the simulations to  two spatial dimensions, our results compare favourably 
with the recent experimental results of Ivey (1984), and analytical/experimental 
studies of Thorpe (1968), and Keunecke (1970). 

Included in our presentation is a discussion of power spectra. The amount of data 
for the temporal variation of the flow that we have generated is in some cases 
marginal, but in most cases long periods arc covered and Fourier transforms are 
sufficiently accurate to  examine in detail the transitions leading to  turbulence. The 
resulting accuracy is demonstrated by the excellent agreement with the results of Le 
Quere & Alziary de Roquefort (1986) and Haldenwang (1986). In  addition, the 
numerical results clearly show the importance of the spatial structure of the flow in 
order to explain the time evolution of this dynamical system. 

The results clearly show that for Pr = 0.71 and $ < A < 3 internal waves near the 
departing corners are indeed the source of low-frequency oscillations as suggested by 
Ivey (1984), and not caused by a ‘pile up ’ of the horizontal intrusions at the far ends 
as argued by Patterson & Imberger (1980). While the high-frequency oscillations are 
rapidly attenuated, the low-frequency ones are not, so that their presence is felt 
throughout the cavity. The low-frequency attenuation, however, is not in general as 
rapid as suggested by Ivey’s experiment with water since in our case their presence 
is felt throughout the cavity. 

We remark that for A = 0 ( 1 )  and small Prandtl numbers, it becomes experi- 
mentally difficult to maintain adiabatic boundary conditions on the horizontal 
walls as Ru becomes large. Furthermore, in a physical experiment, often the 
Rayleigh number is increased by increasing the temperature difference across the 
cavity. It has been shown that both of these effects greatly modify the stability of 
the flow (Le Quere & Alziary de Roquefort 1986; Chenoweth & Paolucci 1986). 

Finally we note that one of the main difficulties in the numerical simulations of 
convection a t  large Rayleigh numbers is that velocities are large and the problem 
becomes stiff owing to the Ra-a decrease in the boundary-layer thickness. This 
imposes a severe constraint on the timestep and grid size making calculations 
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extremely expensive in computer time. Furthermore, because of the presence of 
internal waves, the transients are very long and the fundamental frequencies amin  
some cases separated by more than an order of magnitude, necessitating long 
computations, but with time resolution dictated by the highest frequencies. 

This work was performed under the auspices of the US Department of Energy by 
Sandia National Laboratories, Livermore, California, under Contract No. DE-AC04- 
76DPOO7 89. 
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